Scientific documents with Quarto

COUSIN Workshops Series

Felipe Ortega Maria Jests Algar

2024-12-20

Table of contents

Preface
I Quarto
1 Scientific documents

1.1 Literate programming L e
1.2 Reproducible research oL Lo L
1.2.1 Reproducibility and replicability L.
1.2.2 Replication levels e
1.2.3 Replicability tools
1.3 Quarto for scientific publications
1.4 Quartion installation

Types of documents

2.1 Individual documents e
2.2 Books . ..o
2.3 Articles and publications Lo
2.4 Presentations e
2.5 Websites L e
2.6 Dashboards
Quarto workflow
3.1 Document assembly line o o
3.2 Producing HTML
3.3 Producing PDF L
3.3.1 Customising PDF documents,
Individual Documents
4.1 Creating a document with RStudio L.
4.2 Document structure L e e e e
4.2.1 Thepreamble e
4.2.2 Listof options L
4.2.3 Basic Markdown syntax
4.3 Creating documents (output)
4.3.1 Preview e e e
4.3.2 Selecting output type L
4.3.3 Basic configuration options
4.4 Executable code chunks e
4.5 Author toolkit e
4.5.1 Document sections L e e
4.5.2 Equations e
4.5.3 Tables oL

ii

12
12
12
12
13
13
13

14
14
15
15
16

Table of contents

454 Callouts
4.5.5 Bibliographic referenceso oL
4.5.6 General document style L

Il Quarto books

5 Books
5.1 Creating a book project
5.2 Configuration options L L Lo
5.3 Home page (preface)
5.4 Writing tools L

5.4.1 Book structure

5.5 Managing references L
5.6 Project preview L e
5.7 Publication options
5.8 Customisation and templates L L oL Lo

6 Reports
6.1 Templates
6.2 Project managemento e
6.3 Publishing

11l Publications

7 Scientific publications

7.1 The keep-tex option: true L
7.2 Figures and graphs for publication 0 L.
7.3 Facilitate citation of articles Lo
7.4 Example of using scientific article templates

7.4.1 Elsevier Magazine Templateo

8 FAIR Principles

8.1 OVErvIEW e e
8.2 Publication of source code and technical documentation
8.3 Dataset publication Lo
8.4 Reference management and open publication

9 Additional resources

9.1 Quarto. . . .

9.2 FAIR principles and open science

References

Appendices

A Code reference

Al Quartostatements e e e

A.2 R statements

iii

34

35
35
36
37
37
38
39
39
40
40

41
41
41
41

42

43
44
44
45
45
45

48
48
49
51
51

52
52
52

53

Table of contents

B Integrated Development Environments for Quarto
B.1 R Studio. e e e
B.2 Visual Studio
B.3 Positron e

C Useful R packages

C.1 Ecology e
C.2 Data visualisation
C.3 Data processing o
C.3.1 Tidyverse o o o e e e
C.3.2 Alternatives to the Tidyverse
C.3.3 Pipelines e
C.4 Spatial data
C.4.1 sf (Simple Features) L
Cd.2 terra e
C.5 Time series o e e
C.5.1 Tidyverts o o e
C.6 Data visualisation
C.6.1 ggplot2 e
C.7 Data analysis and Machine Learning 0oL
C.7.1 Tidymodels oo e
C7.2 mlrd . . . o

D Producing PDF documents
D.1 PDF documents with Quarto
D.2 Quick LaTeX primer e e e e e
D.3 Available templates L

References

iv

55
55
55
95

56
56
56
56
56
56
56
56
56
56
56
56
56
56
56
56
56

57
o7
o7
o7

58

Preface

This workshop describes how to use Quarto, a software for producing scientific documents and pub-
lications in ecology and plant research.

Quarto is a powerful and versatile tool for researchers implementing reproducible workflows. The
quest for open-access research, including the final product (manuscripts) and ancillary research ma-
terials like source code, datasets, figures, pipelines or setup files, has become a prominent concern
among scholars and practitioners in many fields. Prestigious publications require authors to submit
these materials alongside manuscript drafts to let other colleagues reproduce and validate the results,
replicate studies in new cohorts or improve their interpretability.

Quarto combines formatted text and executable source code chunks into a single document. Code
chunks can be written in different programming languages such as R, Python, Julia or Observable.
As we will see, it is possible to combine different programming languages in the same document or
collection of documents, increasing the flexibility of this tool.

This is a practical guide, presenting hands-on examples and code to produce your Quarto docu-
ments quickly. In addition, key concepts and best practices are also presented to steer new Quarto
apprentices in the right direction.

To learn more about Quarto visit the comprehensive guide. Quarto can produce standalone docu-
ments, books like this one, as well as complete websites.

https://quarto.org/docs/guide/
https://quarto.org/docs/books
https://quarto.org/docs/websites/

Part |

Quarto

1 Scientific documents

In their daily work, students, academics and scientific specialists produce a large amount of docu-
mentation of all kinds: laboratory notes, lectures, memos, technical reports and, above all, scientific
articles to publish their discoveries and advances in an area of knowledge. Typically, creating this
type of scientific document involves many tasks involving different tools and possible points of fail-

ure.

Figure 1.1 shows a schematic overview of a classic workflow for creating scientific documents. The
main element is often a word processor master file (like Word or OpenOffice/LibreOffice), a web page,
or a LaTeX file (if we are creating a PDF document) that holds all contents.

J J

v g

%

. . o= —0
éGTDQ::: LT Scientific article or

?fﬂ,? = document

—

i
d

Data sources Data processing N
and analytics Bibliographic
references

Figure 1.1: Creation process for cientific articles and documentation.

This master file is filled with content from a variety of sources, such as:

figures and diagrams generated manually or through software code (such as data visualization
charts);

tables and summaries describing data sets and results;

results and evaluation of the performance of models or algorithms; statistical or machine learn-
ing;

mathematical formulas and equations;

data tables and other useful information;

bibliographic references (usually generated with the help of some bibliographic information
management program).

Many of these elements force users to run external tools and programs, procedures, and other tasks
over and over again and then incorporate the new results into the master file. We must admit that

1 Scientific documents

this process, which is mostly manual, is tedious and very prone to errors or oversights. “Wait! I
forgot to update Figure 1. “Are you sure these are the latest evaluation results for model M?” “Have
you checked if we have uploaded the latest version of the data file D?” These are common questions
that arise in the day-to-day work of scientific teams.

However, it would be great if it were unnecessary to carry out all this manual and sometimes very
frustrating process manually. Do we have any alternative to avoid it? Yes, we do. The answer to
our needs is provided by a compelling concept: literate programming.

1.1 Literate programming

In 1984, professor Donald E. Knuth (1984) coined the concept of literary programming. Yes, that
happened more than 40 years ago. This concept states that it should be possible to integrate
formatted text and results of the execution of software code to compose said document dynamically
in a single scientific document. So, why has it taken us so long to implement this idea? Knuth’s
vision, although significantly ahead of its time, was correct, but the technology of the time did not
allow it to become real.

However, we have all the essential elements to make it real today. Quarto is a software tool that lets
us automate and manage the entire process of creating literary programming documents quickly and
reliably.

1.2 Reproducible research

For many decades, the scientific method has relied upon publishing research papers that describe the
results of data analysis and experiments. In all cases, it is essential to be able to trust the conditions,
the data collected, the method of analysis and execution of the experiments, along with the various
kinds of tools, including software, that the authors of the publication used to carry it out.

However, the numerous advances in recent years in the tools and methods of analysis make it much
easier to check the results of these analyses. We might assume that this makes the work of scientists
much easier, but in reality, the opposite is true. Let us look at some examples:

o Oncology (Begley & Ellis, 2012): The Biotechnology Department of Amgen (Thousand Oaks,
CA, USA) was able to confirm only 6 of a total of 53 emblematic research articles published in
this area. Bayer HealthCare (Germany) was able to validate only 25% of the studies analyzed.

o Psychology (Wicherts et al., 2006): 73% of the authors of 249 articles published by the APA
did not respond within 6 months to the questions and requests formulated about the data they
used in their research.

o Economics and Finance (Burman et al., 2010): A comparison of different software packages
applied in the execution of various financial and statistical model analyses shows that each
of these packages produces very different results using the same statistical techniques directly
applied to identical data as those used in the original publication.

In fact, articles have even appeared suggesting that many of the results published in areas such as
Medicine may not be entirely reliable (Ioannidis, 2005). As a result of all these recent findings, a
great controversy has appeared throughout the scientific and research community, accompanied by
a deep crisis of confidence.

https://www.theatlantic.com/magazine/archive/2010/11/lies-damned-lies-and-medical-science/308269/

1 Scientific documents

Nevertheless, as a well-known comic strip about the academic world and research (see Figure 1.2)
very well describes, developing scientific publications is based primarily on the continuous review of
methods and results (starting with the students themselves and their supervisors).

The Figure 1.3 shows a graph published in the prestigious journal Science Magazine (Brainard et al.,
2018), representing the evolution of the number of research articles retracted or withdrawn for various
reasons between 1997 and 2014. In this graph, we can see how the improvement of tools and the
greater availability of resources allow for the analysis and review of a greater volume of publications
and analyses, which allows for the detection of a more significant number of problematic cases.

1.2.1 Reproducibility and replicability

There is often talk of reproducing and replicating a data analysis or a scientific experiment (Leek &
Peng, 2015). However, many shreds of evidence show incompatible definitions of these two and other
related terms (Barba, 2018). Be very careful because depending on the scientific community or the
field of knowledge we find ourselves in, the meaning of these two terms may even be opposite to their
accepted definition in other areas . Here, we will stick to the definition accepted in a large number
of areas, including statistics or scientific computing (see Barba, 2018, p. 33):

e Reproducibility is the ability to recompute the results of an analysis with the same data used
in the original analysis and know the sequence details (workflow or pipeline) of operations that
make up said analysis. Certain premises must be able to be guaranteed:

— If we use the same tools (e.g. R, a specific list of packages, identical versions of all packages
and dependencies), as well as the same code (R scripts) on the same data, the results and
conclusions must be consistent with those of the original analysis.

— The authors of the original analysis must provide all the elements (data, code and proce-
dure used) to allow the analysis to be reproducible (Barba, 2018).

e Replicability is the ability to perform an experiment or analysis independent of the original
that addresses the same objective but on a set of data different from that used in the initial
study. If the results are not consistent, more replications will be necessary to harmonize the
results and conclusions through appropriate techniques, such as meta-analysis.

1.2.2 Replication levels

Depending on the elements published by the authors of the original study and the details provided
regarding the process to carry out the study, its steps, and involved tools, we have different levels of
replicability or reproducibility, represented in the Figure 1.4.

e Not reproducible: No data, code or specific description of the implementation of the study or
analysis is available. Many scientific publications no longer accept publishing articles under
these conditions.

! Among the most important examples of definitions that contradict those we give in this workshop are those adopted
by the Federation of American Societies for Experimental Biology (FASEB) in immunology and microbiology, as
well as those adopted by the Association for Computer Machinery (ACM) in computer science.

1 Scientific documents

"FINAL doc

o =y

CFINAL_rev.Z.dac

? 7
INAL _rev.6.COMMENTS.d FINAL _rev.8.commentss.
FINAL _rev.6.COMMENTS. doc Ariab il

JORGE CHAM @ 2012

)
FINAL_rev.18.comments?. ENAL_rev.22.commente49.
corrections?.MORE.30.dot ¢ orrections. (0. #£@$%WHYDID

WWW.PHDCOMICS. COM

Figure 1.2: Comic strip representing the review model for scientific publications. Source: PhD comics.

http://phdcomics.com/comics/archive.php?comicid=1531

1 Scientific documents

2000 2005 2010 2015
i
@ Fraud @ Reliability
@ other misconduct @ Error

Possible misconduct Miscellaneous
¢ g
o >
g8
-
3
£3
= T
1997 2007 2014
All retractions: 62 All retractions: 419 All retractions: 946
Fraud: 29 Fraud: 252 Fraud: 411

Figure 1.3: Evolution of the number of scientific publications retracted or withdrawn for various
reasons, between 1997 and 2014. Source: Science Magazine (Brainard et al., 2018).

e Code or Data: A good number of publishers request that the data sets used in the analysis
or study of the publication be accessible through a URL, either because they are available in
a public repository or because the authors of the article have published it. Likewise, many
publications require that the software code to carry out the analysis is also publicly accessible
in an open source repository or a freely accessible version control service project.

e Code and data: Ideally, both the code and the data should be publicly accessible for anyone
who wants to examine them or use them to reproduce the results (validation) or replicate the
analysis with other data or other cases.

o Runtime environment and linked data: A further step to facilitate the reproducibility of studies
consists of publishing code and metadata files with more precise information about the pro-
gramming language, the software packages used and any other dependencies necessary to carry
out the same study or analysis. Another variant to facilitate reproducibility is encapsulating
the code and dependencies in a preconfigured virtual container to download and execute it
directly.

e Gold standard: The most advanced level would consist of documenting all the procedures
performed during the study or analysis, including coding tasks of obtaining, cleaning and
preparing the data, and producing graphics to visualize the results or any other results derived
from the study.

1.2.3 Replicability tools

Specific technologies and tools that have become more sophisticated and refined in recent years are
making replicating data processing and analysis easier.

https://www.sciencemag.org/news/2018/10/about-these-data

1 Scientific documents

Publication only Additional elements Full replication

Data and Execution
code environment
and
linked data

Code

Gold
standard

Not
Reproducible

Replicability levels

Figure 1.4: Replication levels spectrum in scientific publications. Source: Peng (2011).

o Version Control Systems for software code (SCV): Tools such as Git, Mercurial and web services
such as GitHub or GitLab have popularized the creation and publication of projects, enabling
software code management and controlling the changes and the released versions. Web services
also integrate a good number of tools to support different facets of the software development
process, such as the generation of documentation, manuals and examples, error reports and
requests for improvements, continuous integration and continuous deployment (CI/CD), sys-
tematic testing of the generated code, etc. If you have not yet considered how using a tool for
code version control can benefit you, take a look at Figure 1.5, where you will relive a situa-
tion that is unfortunately very common among researchers and scientists who develop software
solutions.

o Software virtualization and containers: In a technological environment dominated by the con-
tracting and deployment of computing infrastructure and services in cloud computing archi-
tectures, packaging and virtualization tools for software applications and services that can
be installed and deployed in a short time have revolutionized the way software products are
published and managed, including data processing and analysis products.

o Data version control: Akin to SCV for source code, new software tools bring the same principles
to data files. This way, we can control different data file versions, modifications, etc. Data
Version Control (DVC) allows versioning of data and models. As a result, we can always know
which version of the data and which list of features have been included in each model considered
during the analysis, keeping the descriptive information about these three essential components
that must always be cohesive.

e Model and experiment management: Another type of project management tool for machine
learning projects allows the organization, monitoring, comparison, and selection of the experi-
ments and models we have carried out. One of the most recent notable examples is ML Flow,
which provides support for model tuning, evaluation, and optimization, deployment of models
in production environments, creation of a registry of pre-trained models, etc. Of course, com-
bining this type of tool with others, such as DVC, can create a comprehensive management
environment for our projects.

e Creation and management of data processing pipelines: The last essential element in any data
processing and analysis project that must take care of scalability is a tool for creating and

https://dvc.org/
https://dvc.org/
https://dvc.org/doc/use-cases/versioning-data-and-models
https://mlflow.org/docs/latest/index.html

1 Scientific documents

— A STORY TOLD (N FILE NAMES:

53 C:\userresearchidata
Filename = Date Modified

W@ data_2010.05.28_test.dat 3:37 PM 5/28/2010 DAT file
@ data_2010.05.28_re-test dat 4:20PM 5/28/2010 DAT file
W@ data_2010.05.28_re-re-test.dat 5:43PM 5/28/2010 DAT file
W data_2010.05.28_calibrate.dat 7:17 PM 5/28/2010 DAT file
@ data_2010.05.28_huh??.dat 7:20PM 5/28/2010 DAT file
i@ data_2010.05.28_WTF.dat 9:58 PM 5/28/2010 DAT file
i data_2010.05.29_aaarrrgh.dat 12:37 AM 5/29/2010 30KB DAT file
¢ data_2010.05.29_#$@*&! dat 2:40 AM 5/29/2010 OKB DAT file
i data_2010.05.29_crap.dat 3:22 AM 5/29/2010 437KB DAT file
@ data_2010.05.29_notbad.dat 4:16 AM 5/29/2010 670KB DAT file
@ data_2010.05.29_woohoo!! dat 4:47 AM 5/29/2010 1,390KB DAT file
@ data_2010.05.29_USETHISONE.dat 5:08 AM 5/29/2010 2,894 KB DAT file
&) analysis_graphs xls 7:13 AM 5/29/2010 455KB XS file
#) ThesisOutline!.doc 7:26 AM 5/29/2010 IBKB DOC file
) Notes_Meeting_with_ProfSmith.tt~ 11:38 AM 5/29/2010 1,673KB TXT file
23 JUNK. . 2:45PM 5/29/2010 Folder

U data_2010.05.30_startingoverdat | 8:37 AM 5/30/2010 420KB DAT file

< |
Type: Ph.0 Thesis Modified: too many times

Figure 1.5: Software version control. Source: PhD Comics

data

features

features

model

model

7fe5fc5 d512efl 23811e0 e7ebblf 020c¢55fF
Y) ") O
— S A A\ Ay
Update features Update dataset Adjusting input Add the new dataset Adjusting input
and input parameters parameters and features parameters

features features

model model

Figure 1.6: Data, code and model versioning example maintained by DVC. Source: DVC Documen-
tation.

https://phdcomics.com/comics/archive_print.php?comicid=1323
https://dvc.org/doc/use-cases/versioning-data-and-models
https://dvc.org/doc/use-cases/versioning-data-and-models

1 Scientific documents

managing data processing and analysis flows or pipelines. The set of all the pipelines in our
project makes up the general workflow of the project. These tools are known as data or workflow
orchestrators. In this category, we have compelling and feature-packed tools such as Apache
Airflow or Prefect, and simpler, more straightforward ones such as Luigi.

Of course, the R community has not remained oblivious to these new trends, in particular the R
OpenSci initiative, within which we find many packages (published in the official CRAN repository)
that cover various aspects of scientific work, including pipelines and workflows management through
the targets package.

o User manual for the R package targets.

1.3 Quarto for scientific publications

Now that we know the fundamental concept on which Quarto works and its application to achieve
a higher level of reproducibility and transparency in our scientific process, we wil explain in more
detail the process that Quarto follows to compose a document. The Figure 1.7 presents a diagram
with the document creation process and the elements and tools that come into play to achieve it.

quarto » ->-> = I

Figure 1.7: Content creation process with Quarto.

e Quarto: A software to create scientific documentation following the principles of literary pro-
gramming.

o Knitr and programming language: The knitr package is responsible for the connection
with an interpreter of a programming language (R, Python, Julia) that can be executed in a
REPL environment, in order to be able to execute software code fragments integrated into the
document and generate content in Markdown format as a result.

o Markdown (formatted content): a textual content markup language that allows easy format-
ting of the information in our documents created with Quarto.

o Pandoc (universal translator of document formats): This software receives content already
formatted using the Markdown standard and converts it into the selected output type. Several
options are available: HTML, PDF, Word, slides, websites, or interactive panels (dashboards).

10

https://airflow.apache.org/
https://airflow.apache.org/
https://www.prefect.io/
https://luigi.readthedocs.io/en/stable/
https://ropensci.org/
https://ropensci.org/
https://ropensci.org/packages/
https://docs.ropensci.org/targets/
https://books.ropensci.org/targets/
https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop

1 Scientific documents
1.4 Quartion installation

To install the latest version of Quarto software on your system, point load the URL https://quarto
.org/docs/get-started/ in a web browser. Here, download and install the file corresponding to your
operating system.

Currently, the latest version of Quarto available is 1.5.57.

1 Software requirements to generate PDF documents

By default, the output format of documents generated with Quarto is HTML. If we want to
generate PDF documents, we must install a LaTeX distribution. For more information, see
Section 3.3.

11

https://quarto.org/docs/get-started/
https://quarto.org/docs/get-started/

2 Types of documents

In this chapter, we present the main types of documents and collections of scientific content that we
can generate with Quarto.

2.1 Individual documents

The easiest way to work with Quarto is to create a document individual. Said document may use the
sections or chunks of code to read input data or download it from some source, process them, analyze
them and display the results. Graphics can be added, tables, equations, bibliographic references and
many other elements.

The documents always have a standard structure:

e Preamble: in which configuration options are specified for the creation of the document with
Quarto and its associated tools.

e Body: the section that houses the main content of the document, including sections of
Markdown-formatted text and sections of code executable. The software code may be shown,
if useful, or be hidden in the final result.

o References: References are included at the end of the document bibliographical, as is usual in
scientific texts.

2.2 Books

The natural evolution of the previous case is to gather a collection of documents individuals in a
single book. Quarto books allows you to create this type of documents, structured in parts, chapters
and sections. The options of configuration will allow you to create an introductory cover for the site
website that contains the chapters (one document per chapter) or the elements necessary to create a
PDF book, similar to those published by a editorial.

2.3 Articles and publications

One of the key results in any scientific process is the production of articles and publications (technical
reports, etc.) that collect the results and progress achieved scientists. In this case, Quarto can
also help us, with the collaboration of other essential elements such as the R package rticles,
which provides templates to generate articles according to the specifications of the main scientific
publications and publishers in a multitude of fields of knowledge.

12

2 Types of documents
2.4 Presentations

It is also possible to generate presentations (usually in HTML format) with slides through Quarto.
In this case, we would have the support of several packages and environments of creating web presen-
tations at our disposal, such as reveal.js (HTML), Beamer (for LaTeX/PDF) or MS Office PPTX

format.

We will not discuss this case in this workshop, but you can obtain more information in the online
guide, available at https://quarto.org/docs/presentations/.

2.5 Websites

Another option that may be interesting is to create personal websites (for example, for show our CV
and a selection of featured works, publications, etc.), blogs and even corporate websites (organization,
research group) quickly using Quarto. There are numerous free and paid templates now available to
create websites with a beautiful look. harmonized, although we will need to learn a little HTML and
CSS to be able to customize further our website.

Here is an example of an environmental technology researcher website created with Fourth: https:
//www.mm218.dev/. More examples of different types of websites generated with Quarto: https:
//drganghe.github.io/quarto-academic-site-examples.html.

More information and tutorials for creating websites with Quarto can be found at https://quarto.o
rg/docs/websites/.

2.6 Dashboards

Finally, it is possible to create custom dashboards for monitoring. of data, analysis of models and
results or for examples and teaching applications using Quarto, as described in the guide https:
//quarto.org/docs/dashboards/.

In this case we can include among the tools Shiny, a package software for R (also available for Python)
with which to create interactive applications based into data quickly and easily.

13

https://quarto.org/docs/presentations/
https://www.mm218.dev/
https://www.mm218.dev/
https://drganghe.github.io/quarto-academic-site-examples.html
https://drganghe.github.io/quarto-academic-site-examples.html
https://quarto.org/docs/websites/
https://quarto.org/docs/websites/
https://quarto.org/docs/dashboards/
https://quarto.org/docs/dashboards/
https://shiny.posit.co/

3 Quarto workflow

In this section we are going to explain some more details about the creation process of documents in
Quarto, to better understand the components involved in this process and the configuration options
we have available. The Figure 3.1 summarizes at a high level the phases of creating a document with
Quarto.

Knitr md pandoc m)\.

Figure 3.1: Content creation process with Quarto. Source: RStudio.

3.1 Document assembly line

We can consider the process of creating a document in Quarto as a chain assembly in which various
software tools are applied sequentially to produce the final document in different output formats.

e Quarto: The first agent that intervenes in the interpretation of the file with extension .qmd is
Quarto. The program must be previously installed on our computer to that the development
environment that we decide to use (RStudio, Microsoft VS Code, etc.) can find it. Quarto is
responsible for interpreting the content of the file and considering the different configuration
options that we have inserted in the header of the document, as well as in executable code
fragments, to delegate the construction tasks of the different parts of the document to other
tools.

Quarto is also responsible for automatically inserting some authoring elements of documents
(such as callouts, explained in Section 4.5.4), while the generation of other elements (numbering
of figures, tables, bibliographic citations, etc.) It is delegated to other tools like Pandoc.

o Code execution engine (engine): One of the great advantages of document production in
Quarto is the possibility of inserting fragments of executable code in our documents. Quarto
can work with different engines (engines in Quarto terminology) that interpret the code and
return the result of its execution to integrate it into the final document.

— All R language code blocks use the knitr package as engine execution.

— Executable code blocks in other languages supported in Quarto (Python, Julia, Observ-
able) use the kernel available in the Jupyter tool for execution, except in the explicit case
that blocks of code are combined in R and Python in the same document.

14

https://quarto.org/docs/get-started/hello/rstudio.html#how-it-works
https://quarto.org/docs/computations/execution-options.html#engine-binding
https://jupyter.org/

3 Quarto workflow

— In the particular case that the same document combines code blocks in R and Python,
then the Knitr tool is used for the R code along with the R reticulate package to execute
the blocks written in Python. This combination has the additional advantage that it is
possible “pass” variables and results between the R and Python runtimes, so that we can
use variables and data structures created in the R part within our Python code and vice
versa.

o Markdown: The intermediate product of all the previous phases is a file in Markdown (.md
extension), which already integrates the formatted textual content and many of the results and
elements additional generated by the different tools that have come into play up to this point.
If useful, this intermediate file can be stored for review or for use it for other purposes. This
file is then sent to Pandoc for the last stage document creation.

e Pandoc: The Pandoc project offers a software tool to translate documents between different
information representation formats. As you can quickly see On the main page of the project,
the list of supported formats is really extensive. For purposes Practically speaking, Quarto
uses Pandoc’s ability to receive as input a document in Markdown and generate output in three
possible formats: HTML, DOC/DOCX or PDF. The Markdown file must include specific syntax
to encode certain elements (cross-references, bibliographic citations, figures, tables, equations,
etc.) that we will present in the following chapters, so that Pandoc can interpret these elements
and represent them appropriately in each output format.

Finally, it should be noted that document viewing programs are needed to load the documents.
Output documents, depending on format: web browser (HTML), MS Word (DOC/DOCX files),
PDF viewer (PDF files).

3.2 Producing HTML

The default option for the output format of Quarto documents is to generate an HTML document,
which can be viewed with most modern web browsers. This output format has several advantages:

e It is quite likely that the recipient of the document already has one or more browsers installed
on your system to view the document, if we send or share it directly to you.

e It is easier to publish this type of documents on the Web, using one of the different platforms
available for this purpose:

— Quarto Pub, a document publishing service that allows are publicly accessible.

— Individual documents (see Chapter 4) and books or collections of Documents (see
Chapter 5) can be published easily and quickly on publishing sites. hosting software
projects such as GitHub or GitLab, which also provide hosting services version control,
bug/improvement reporting management, documentation, testing, etc.

3.3 Producing PDF

Unlike in HTML, when we generate PDF documents an additional compilation step is added of the
document at the end of the entire assembly line, using LaTeX and the compilation engine XeLaTeX to
generate PDF output. Therefore, if we select this output option it is essential have a TeX /LaTeX
distribution previously installed on our system, to compile and generate the documents. If we do

15

https://rstudio.github.io/reticulate/
https://pandoc.org/
https://quartopub.com/

3 Quarto workflow

not have any yet, you can install TinyTeX, a lightweight distribution of TeX Live which is much
smaller in size (~100 MB vs. to more than 4 GB of full TeX Live).

3.3.1 Customising PDF documents

Predefined LaTeX document templates can be used. By default, Quarto uses various templates from
the LaTeX package collection koma-script.

Some of these templates can work relatively easily in Quarto, while Others require some adaptation,
for which some knowledge about Latex. This is probably a more advanced topic for many users, so
for now I don’t We are going to discuss it in this introductory workshop.

However, as an example, we offer below a list of some examples that illustrate the enormous possi-
bilities of this type of templates:

e Professor R.J. Hyndman has published Monash University Quarto document templates, that
can be used as a starting point to customize them in our own projects.

e The repository Awesome Quarto Thesis collects a list of Quarto templates to generate
TFG/TFM reports and doctoral theses for some universities. Also linked is a generic extension
template for Quarto, designed to make it easier for other users to customize it according to the
criteria marked by their own institution to generate these jobs.

16

https://quarto.org/docs/output-formats/pdf-engine.html#installing-tex
https://tug.org/texlive/
https://ctan.org/pkg/koma-script
https://robjhyndman.com/hyndsight/quarto_templates.html
https://github.com/Jupyter4Science/awesome-quarto-thesis
https://github.com/nmfs-opensci/quarto-thesis
https://github.com/nmfs-opensci/quarto-thesis

4 Individual Documents

The easiest way to get started with Quarto is to create stand-alone documents. These are self-
contained documents, incorporating formatted text and executable code in a single file.

To create a new document with Quarto, you can simply use the menu options in RStudio or MS
Visual Code, or create a file with the extension .qmd.

4.1 Creating a document with RStudio

Before you start, make sure you have installed the Quarto software on your machine. It is a standalone
software program, which needs to be installed for the rest of the process to work (see the Section 1.4
section).

If you already have a recent version of RStudio installed, you will need to install the following
packages for the example:

install.packages("tidyverse")
install.packages("palmerpenguins")
install.packages("quarto")

Now, in RStudio we create a new project choosing the Quarto project option, as it appears in
Figure 4.1.

We can name our project directory as first-example and click Create Project.

As a result, a new project should appear open on the screen, with the appearance shown in Fig-
ure 4.2.

Specifically, in the upper left panel we can see that, by default, the Visual editor has been opened,
which allows creating Quarto documents in a more intuitive way. However, to start getting familiar
with the structure of a quarto document from the beginning, we will switch to the Source editor to
view the source code, by clicking on the button shown in the figure Figure 4.3.

4.2 Document structure

The following example code presents a basic structure of an individual Quarto document.

17

4 Individual Documents

New Project Wizard

Back Project Type

New Project
2 R Package
R Shiny Application

¥ Quarto Project

Create a new Quarto project

Quarto Website

) Quarto Blog

WVOOWW VYNV Y

E3 Quarto Book

Cancel

Figure 4.1: New Quarto project

File Edit Code View Plots Session Build Debug Profile Tools Help

- Addins -
.~ Environmen t History Connect Build Tutorial
Z Rend:] R % > Import Dataset - | * 200 Mi8 List
ormal - | i= 3 & | Format - | Insert - | Table - outiine | R - | Global Environment -
Quart
title: "primer-ejemplo"
fither fprimermejenpto Environment is empty
Quarto
Quarto enables you to weave together content and executable code into a finished
document. To learn more about Quarto see https://quarto.org.
o » Files Plots Packages Help Viewer =0
1+1 @ Folder | © BlankFile - | © D o
>stab ucLm-Doctorado eproducibilidad - primer-ejemy &
size Modified
i @) _quarto.ymi 528 Oct 17,2024, 1:28 AM
(Top Level) = Quarto ¢ primer-ejemplo.qmd 2068 Oct 17,2024, 1:28 AM
Console Terminal x Background jobs % primer-ejemplo.Rproj 2038 Oct 17,2024, 1:28 AM

R - R44.1 - ~/DSL:

R es un software libre y viene sin GARANTIA ALGUNA.
Usted puede redistribuirlo bajo ciertas circunstancias

Figure 4.2: First example

| primer-ejemplo.gmd

Render on Save . Render

Source Visual

Figure 4.3: Source editor

18

4 Individual Documents

title: "My first document"
author: John Doe
date: 2024-12-20

Here we have a line of formatted Markdown content.

o {r}
#| label: my-label

This is a code chunk. You can place here executable

code that will be run by the R interprenter. By default, the final
document will automatically integrate both the input code and the
output from its execution

<-1+1

o H H H R

Additional Markdown content after the code chunk.

The file content consists of two parts:

e Preamble: is delimited by two —--- tags. Within this area we can assign values to configuration
options for layout and creating the document, such as title, author(s), date, etc.

We can also configure various options related to the output format of the documents.

e Document body: is composed of text paragraphs formatted using the Markdown markup
syntax, which we will see later. In addition, executable code fragments or chunks can also be
inserted into the text, which are marked up using a special syntax (as we see in the example
above).

Each chunk of executable code is delimited as follows:

TAr
Codigo en R

@ Support for additional programming languages

Although in this workshop we focus on the R language, you should know that Quarto also
supports other programming languages such as Python, Julia or Observable.

We can change the programming language of each code chunk by indicating its name at the
beginning, for example:

{python}
Coédigo en Python

19

4 Individual Documents

Nevertheless, this code chunk in other languages requires additional configuration. For example,
we must set up a Python interpreter to execute code chunks written in this language.

4.2.1 The preamble

A basic example of a preamble is as follows (although it would be sufficient to simply provide a title
for the document):

title: "My first document"
author: John Doe
date: 2024-12-20

Of course, more options can be added, which we will explain next

4.2.2 List of options

There is an extensive list of configuration options that we can include in our documents.

o HTML output options: these allow us to configure various basic aspects of the document, such
as the title and subtitle, date, author (or list of authors), summary or DOI; formatting options
such as the subject or advanced styles for HTML content with CSS; numbering and table of
contents, etc.

e Basic options for HTML with Quarto.
o Complete list of HI'ML options with Quarto.

e PDF output options: these offer the possibility of configuring multiple parameters for the
creation of the document in this format, many of them similar to those for the HTML output. A
particularly relevant option is to choose the LaTeX document format (documentclass option),
which defines the general appearance of the layout to be used. By default, classes from the
KOMA Script metapackage are used, such as scrartcl or scrbook. It is also important to
indicate the papersize option, in our case to ensure that a standard format is used such as A4.
The citation format is also relevant, being able to choose, for example, the BibLaTeX engine
which is more powerful, with multilingual support and for native UTF-8 character encoding.
Finally, it is also important to indicate the compilation engine. If you want full flexibility in
document layout, it is highly recommended to use the XeLaTeX engine (option pdf-engine:
xelatex), which is the default used by Quarto.

e Quarto PDF Basics.

o Complete list of PDF options available with Quarto.

20

https://quarto.org/docs/output-formats/html-basics.html
https://quarto.org/docs/reference/formats/html.html
https://ctan.org/pkg/koma-script
https://quarto.org/docs/output-formats/pdf-basics.html#citations
https://bibtex.eu/es/biblatex/
https://quarto.org/docs/output-formats/pdf-engine.html
https://quarto.org/docs/output-formats/pdf-basics.html
https://quarto.org/docs/reference/formats/pdf.html

4 Individual Documents

4.2.3 Basic Markdown syntax

In the following link you can find a quick basic tutorial that shows the basic options of the Markdown
syntax accepted in Quarto documents to format textual content.

o Basic guide to markdown syntax.

4.3 Creating documents (output)

By default, if we do not indicate anything, Quarto will generate a single output format of the
document in HTML. However, it is possible to define more than one output format by including
more configuration options. Of course, you can indicate different options to generate several output
formats simultaneously, or to choose the output format that we want to produce based on our interests,
selecting the format that we need when previewing or when generating the final document.

4.3.1 Preview

To preview the document we have to press the Render button in the tools menu of the RStudio
interface, as shown in Figure 4.4.

= | primer-ejemplo.gmd
Render on Save =, Render -
Source | Visual Render the current document (Ctrl+Shift+K)

l' —_
2 title: "primer-ejemplo”

Figure 4.4: Render button to preview the generated document.

By default, our main web browser or a panel in the RStudio interface will open showing the HTML
page with the document already generated. By clicking on the gear icon next to the Render button
we can select, among other things, the type of preview we want to be launched after completing
the creation of the document or completely disable said preview. Available options are shown in
Figure 4.5

4.3.2 Selecting output type

When we have several output format options configured in our document, we can choose at preview
time which of the formats is chosen to generate the document. In the Figure 4.6 you can see an
example of a document that includes settings for two output formats (HTML and PDF) and the
change in the Render button, in which a small black arrow now appears just to the right of the
button icon to display the two available output options.

21

https://quarto.org/docs/authoring/markdown-basics.html

4 Individual Documents

| primer-ejemplo.gmd

. Renderon Save | , C = Render -
ey Visual Use Visual Editor Ctrl+Shift+F4
l ———
2 title: "primer-ejemplo" Preview in Window
3 —— Preview in Viewer Pane
4 + (No Preview)
5~ ## Quarto
6 + Preview Images and Equations
7 Quarto enables you to weave toget| + Show Previews Inline de
a finished document. To learn mor: .
''' Chunk Output Inline
<https://quarto.org>. v P
8 Chunk Output in Console
9- | {r} Expand All Output
- Collapse All Output
11~
12 Clear Qutput

Clear All Qutput

Figure 4.5: Render operation preview options.

= | primer-ejemplo.gmd

_ Render on Save |, (@ :=pRender . -
Source | Visual @) Render HTML

- =. Render PDF

2 title: "primer-ejemplo’

3

4 format:

5 html:

6 theme: cosmo

7 pdf:

8 documentclass: scrreprt
9

Figure 4.6: Selecting output formats with the Render operation.

22

4 Individual Documents

4.3.3 Basic configuration options

Below is an example of some basic configuration options that are typically found in documents
formatted as HTML output.

title: "My first document"
author:

- "John Doe"

- "Mary Jane"
date: 2024-12-20

lang: en
bibliography: references.bib

format:

html:
theme: cosmo
toc: true
number-sections: true
html-math-method: katex
css: styles.css

pdf:
documentclass: scrreprt

REST OF THE DOCUMENT

In this example, in addition to the author and the date, a list of two authors is indicated, the main
language of the document (Spanish), the bibliography reference file (in .bib format) and, within the
HTML options, the layout topic, the inclusion of a table of contents (located by default at the top
right), section numbering, selection of the engine to render equations in the document and a custom
styles file in CSS format to adjust some fine layout options.

One option worth highlighting is to force all resources (images, style information, etc.) to be inte-
grated into the HT'ML file itself, to facilitate direct sharing or publication of the document without
having to also provide the auxiliary files necessary to display it in the browser. This option is shown
below:

format:
html:
embed-resources: true

4.4 Executable code chunks

The most distinctive feature of documents created with Quarto is the possibility of inserting exe-
cutable code fragments, called chunks, into the document itself. This also includes the option for

23

4 Individual Documents

said code to generate different results (numeric, graphic, tables, animations, etc.) that are integrated
directly into the document. In this way, if we keep the code updated, the correct versions of said
results will always be generated.

The executable code fragments have the following structure:

o {r}
#| label: id-fragmento

Aqui va el cdédigo ejecutable
a=c(1, 2, 3, 4
b = a"2

The triplet of characters ™~~~ is called a fence and delimits the beginning and end of the code fragment.
Immediately after the opening delimiter, the identifier of the programming language in which the
code of that fragment is written is written in curly braces. This information is used to choose the
appropriate syntax highlighting to display the code of that language and to select the interpreter
that executes the code and produces the results.

In the following lines we can include one or several configuration options specific to that code
fragment, using the syntax #| option: value. For example, in the previous fragment the option
#| label: fragment-id creates a label (which must be unique) to identify that fragment of code
within the document.

o List of options for code fragments.
Some frequently used options are:

e eval: true | false | [...]: Indicates whether the content of that snippet should be eval-
uated (executed). A list of positive or negative line numbers can be passed to explicitly select
which lines of code are included (positive) or excluded (negative) from execution.

e echo: true | false | fenced | [...]: Indicates whether the source code of the snippet
should be included in the document or not. The fenced option also includes the cell delimiter
as part of the output. Finally, it also accepts a list of positive or negative line numbers to select
which lines of code will or will not be displayed in the snippet.

e output: true | false | asis: To decide whether the result of the code execution is included
in the document or not. The asis value forces the result to be treated as raw Markdown content.

e warning: true | false: Indicates whether warning messages should be included in the out-
put.

e error: true | false: Indicates whether generated error messages are included in the output.

e message: true | false: Indicates whether generated information messages are included in
the output.

When fragments generate figures, these are inserted into the document itself. Let’s look at an
example:

24

https://quarto.org/docs/reference/cells/cells-knitr.html

4 Individual Documents

T A}

#| label: fig-example-cars

#| fig-cap: "Grafico de correlacién lineal positiva entre el kilometraje en ciudad
~ y en carretera de diferentes modelos de coches."

library(ggplot2)
#| label: scatterplot
#| echo: true

ggplot (mpg, aes(x = hwy, y = cty, color = cyl)) +
geom_point(alpha = 0.5, size = 2) +
scale_color viridis c() +
theme_minimal ()

35)
)
30
e
)) cyl
Y) 8
25 ®)
e oo) 7
e 0o
2 X
e eoo 6
20 00000 ©
e0000
eee0000® 5
e 0000
e 00000
15 ece0e@ 4
) @ @
10
20 30 40
hwy

Figure 4.7: Grafico de correlacién lineal positiva entre el kilometraje en ciudad y en carretera de
diferentes modelos de coches.

@ Automated figure numbering

It is important that the fragment identifier we choose for the code that generates one or more
figures begins with the prefix £ig-.

In this way, we ensure that Quarto automatically assigns a number to the generated figure and
that we can create cross-references (internal links) to that figure in our document.

As we will see later, other output types such as tables also need to be assigned a specific pattern
in their fragment identifier so that they are automatically numbered and can be referenced
within the document.

25

4 Individual Documents

Figure management in Quarto is quite sophisticated, to the point that you can easily organize several
subfigures with their respective individual descriptions, as shown in the following example using some
additional options.

oA
#| label: fig-mpg-subplot
#| fig-cap: "City and road mileage of 38 popular car models."

#]

#| fig-subcap:

#l - "Color by num. of cylinders."
#| - "Color by motor displacement."

#| layout-ncol: 1

ggplot(mpg, aes(x = hwy, y = cty, color = cyl)) +
geom_point(alpha = 0.5, size = 2) +
scale_color_viridis_c() +
theme minimal ()

ggplot (mpg, aes(x = hwy, y = cty, color = displ)) +

geom_point(alpha = 0.5, size = 2) +
scale_color_viridis_c(option = "E") +
theme_minimal ()

Some common options for chunks that generate figures are:

o fig-width: Width of the figure.

o fig-height: Height of the figure

o fig-cap: String in quotes to be inserted as a caption.

o fig-alt: Alternative text message that fills the alt attribute of the HTML image (for example,
to improve the accessibility of the content).

o fig-dpi: Resolution setting of the figure (in dots per inch).

The tutorial on executable code snippets in the official documentation presents more information and
examples on how to use this powerful Quarto feature.

4.5 Author toolkit

In addition to the ability to integrate executable code and its results into our scientific papers, Quarto
includes a number of resources and tools to provide a complete and efficient authoring experience.

4.5.1 Document sections
As we saw in the Section 4.3.3 example, there are two HTML document configuration options that

allow us to number sections and incorporate an automatically generated table of contents at the top
right of our document.

26

https://quarto.org/docs/get-started/computations/rstudio.html

4 Individual Documents

X X
o000
® oo
o000 00
00
00000
00000
00000
(X X

e
(1]

35
30
25
20
15

Ao

10

40

30

20

hwy

(a) Color by num. of cylinders.

35

30

~ © o < M N

displ

25

XX JoXey J
000
00000
00000
000000

Ao

20

00

(X X J

o000

o000
(2L X J

15

10

40

30

20

hwy

(b) Color by motor displacement.

Figure 4.8: City and road mileage of 38 popular car models.

27

4 Individual Documents

format:
html:
toc: true
number-sections: true

An important feature for creating scientific documentation is being able to include cross-references,
that is, links that take us to other sections of the document. In Quarto this is achieved by following
a simple procedure in two steps:

1. We add a unique tag to identify the section with the syntax:
Section header {#sec-tag}

2. We reference the tag we created for that section in another part of the text, so that Quarto
automatically creates the link (cross-reference) to that section:

In the text we add a reference to the @sec-tag.

An example of this type of automatically created cross-reference can be seen at the beginning of this
section. On the other hand, if we want a section of the document to be excluded from the numbering
scheme of the rest of the sections, we use the special tag in the title of that section:

Unnumbered section {.unnumbered}

There are several additional options that control the way and style in which sections are created and
numbered. Some of them are:

o anchor-sections: Causes an anchor link to be displayed (to link directly to that section in
another document) when the mouse hovers over a section title.

e toc-depth: Specifies how many levels deep the section numbering appears in the table of
contents. By default, 3 levels are displayed.

e toc-location: body | left | right | left-body | right-body: Controls the location
where the table of contents appears in the document.

e toc-title: String with the title of the table of contents.

e toc-expand: Indicates whether all sections in the table of contents should be expanded or
collapsed so the user can click on the ones they want to expand.

e number-depth: Determines the maximum depth to which sections in the document are num-
bered (note, this should be in line with the value assigned to the toc-depth option).

e number-offset: Allows you to set the number at which sections are numbered. If we want
the document to start numbering the highest level section as “4” then we use number-offset:
3. If we want the document to start at a level 2 section numbered “1.5” we must specify
number-offset: [1,4]. Setting a value for this option means that number-sections: true
is automatically set.

28

https://quarto.org/docs/get-started/authoring/rstudio.html#cross-references

4 Individual Documents

4.5.2 Equations

Another essential aspect of scientific documents is the appearance of mathematical symbols, formulas,
and equations. There are several HTML libraries that allow properly formatted equations to be
displayed on the screen. For its part, LaTeX, due to its origins, has always included powerful and
versatile tools to handle this type of content, so support is guaranteed for PDF documents.

In general, the syntax used to write equations is very similar to that used in LaTeX.

e Tutorial on mathematical expressions in LaTeX.
e Summary of mathematical syntax in LaTeX.

There are two ways to display equations in our content, also following a similar philosophy to that
of LaTeX documents:

e Equations in line with the text: to display the equation within a line or paragraph, at the same
height as the rest of the text.

o Equations in display mode: the equation is displayed in a separate space, between two para-
graphs of text and with a certain margin of space at the top and bottom.

Example of an inline equation: $F = m \cdot a$

Result: example of an inline equation: F' = m - a.

Example of an equation in display mode:

$$E = mc~{2}3%$

Which produces the following result (see below how to add the numbering):

E =mc? (4.1)

If we also want to number our equations, we must remember to use the unique identifier tag pattern
eq-tag to identify it and then be able to insert internal references to said equation in the text.

$$ E = mc™{2} $$ {#eq-energy}

As a result, we can insert a cross-link to Equation 4.1.

29

https://www.overleaf.com/learn/latex/Mathematical_expressions
https://raw.githubusercontent.com/manuelemacchia/math-latex/master/amsmath.pdf

4 Individual Documents

4.5.3 Tables

Tables are another relevant content that we can format in different ways in the documents generated
with Quarto.

e Introduction to creating tables in Quarto.

In this case, the visual editor can greatly simplify this task for us. It is advisable to try it to see
the difference, since it is a very intuitive tool. However, following the same line as the rest of the

workshop, here we will describe the details to create this content directly in the Markdown code of
the file.

The most direct way to create a table in Markdown is to compose a pipe table, so called because its
syntax is based on the | operator on the command line. Let’s see an example.

| Default | Left | Right | Center |
| -===————- | :=———- | —==——-: | g=====4
1	2	3	4
22	23	24	25
4	3	2	1

The result of including the previous code in our document is:

Default Left Right Center

1 2 3 4
22 23 24 25
4 3 2 1

We can see how the key to controlling the horizontal alignment of the table content is to properly
place the : symbol on the line just below the title line, which separates it from the body of the table.

If we do not want to include a title, it is mandatory to include the first line, but we can leave the
cells blank.

Below the table we can insert the expression : Table Caption to include a descriptive message. It
is also possible to directly use some style elements included in the classes of Bootstrap, the web style
framework that Quarto uses to compose pages (we have seen before how to use the document option
theme: cosmo to use the Cosmo theme of Bootstrap). There are different effects, and one of the
most frequent is to color the background of the rows in gray alternately as well as highlight the row
on which the mouse arrow is placed. These two effects are .striped and .hover, respectively.

Default	Left	Right	Center
-=—==———-	:m=——-	—=———-:	:m==———:
1	2	3	4
22	23	24	25
4	3	21 1	

: This is the table caption. {.striped .hover}

30

https://quarto.org/docs/authoring/tables.html

4 Individual Documents

Table 4.2: This is the table caption.
Default Left Right Center

1 2 3 4
22 23 24 25
4 3 2 1

Finally, similar to what we do to internally reference equations and figures in our document, we can
also label tables using the pattern #tbl-label to reference it as @tbl-label which is formatted like
this: Table 4.3.

| Default | Left | Right | Center |
| -=—————- | 1 ————- | -————-: et
| 1 | 2 | 3| 4 |
| 22 | 23 | 24 | 25 |
| 4 | 3 | 21 1

: This is the table caption. {#tbl-label .striped .hover}

Table 4.3: This is the table caption.
Default Left Right Center

1 2 3 4
22 23 24 25
4 3 2 1

The same tag pattern should be used in the code chunk identification option #| label: tbl-label
if we later want to reference the table generated by that code chunk with a cross-reference.

More details can be found on creating subtables, changing caption location, as well as creating grid
tables that use a different syntax and allow arbitrary block elements to be included in each cell
(multiple paragraphs, code blocks, unnumbered or numbered lists, etc.).

pommmm pommm e e +
| Fruit | Price | Benefits

+ + + +
| Bananas | $1.34 | - wrapping I
| | | - brilliant colour |
o pommm o et EE +
| Oranges | $2.10 | - rich in vitam. C |
I | | - tasty

pommm pom o +

: Sample grid table.

31

https://quarto.org/docs/authoring/tables.html#subtables
https://quarto.org/docs/authoring/tables.html#caption-location

4 Individual Documents

Table 4.4: Sample grid table.

Fruit Price Benefits
Bananas $1.34 e wrapping
« brilliant colour
Oranges $2.10 e rich in Vitam. C
o tasty

4.5.4 Callouts

It is possible to include callout blocks, to highlight practical notes, warnings, or tips of special interest.
In addition, a title is often given to the callout to make it even more informative.

::: {.callout-note}
Callout title

There are five different types of callouts:
‘note”, “tip’, “warning , “caution’, and “important”.

1 Callout title

There are five different types of callouts: note, tip, warning, caution, and important.

e Introduction to using callouts in Quarto.

4.5.5 Bibliographic references

The management of bibliographic references in Quarto is done by encoding the information in BibTeX
format. This allows you to use any of the bibliographic citation formats supported by this package,
or to include a CLS file that defines a standard format (APA, Chicago, IEEE, etc.).

For example, the document options

title: "My Document"
bibliography: references.bib
csl: nature.csl

indicate a references.bib file where we can store the information about bibliographic references
(which we can obtain from Google Scholar, Zotero or other tools and services on the Internet), as
well as a citation style file nature.cls (style defined by the Nature publisher).

o CLS repository with citation styles.
e Zotero repository with citation styles.

32

https://quarto.org/docs/authoring/callouts.html
https://github.com/citation-style-language/styles
https://www.zotero.org/styles

4 Individual Documents

Depending on the style and format of the citation, we can use one or another syntax to indicate
the author and the year in parentheses, the author outside the parentheses, page numbers, chapters,
etc.

e Quarto citation syntax reference table.

Finally, the ordered list of bibliographic references (according to the citation style criteria we have
selected) must appear at the end of the document. To achieve this in an HTML document, we must
include a special code, which is normally placed in a separate, unnumbered section, as shown in
Figure 4.9.

References {.unnumbered}

111 {#refs}

2w B

Figure 4.9: Syntax to display bibliographical references at the end of the document.

When the generated output is in PDF format and the BibLaTeX or natbib reference management en-
gines are used, then the list of references always appears at the end of the document and the previous
tag is ignored. Finally, in the rare case that we do not want to include any bibliographical refer-
ences in our document, we can include in the header metadata the option suppress-bibliography:
true.

4.5.6 General document style

So far, the example document we have shown as well as these notes always use a style format or
theme from the Bootstrap web development environment, called cosmo. However, there is a wide list
of alternative themes to modify the general style of our document (color scheme, typography and
font size, organization of content, appearance of links, etc.). The Quarto project is responsible for
regularly combining the most popular style themes so that they are available as an option for the
document.

In this theme directory on GitHub you can check an updated list of the possible values that we can
assign to the theme option in the header of the document. It is useful to experiment with various
options to find the one that best suits the type of document generated, its content and the audience
it is intended for.

An online demo of many of the available themes can be accessed on the website https://bootswatch
.com/.

33

https://quarto.org/docs/authoring/citations.html#sec-citations
https://github.com/quarto-dev/quarto-cli/tree/main/src/resources/formats/html/bootstrap/themes
https://bootswatch.com/
https://bootswatch.com/

Part 1|

Quarto books

34

5 Books

Now that we know all the basic elements for creating individual literary programming documents with
Quarto, the natural evolution is to ask ourselves if we can manage ordered collections of documents
in a single project to, for example, create a book, a laboratory notebook, or an experiment log.

Book-type projects in Quarto are the answer to these needs, allowing us to group and organize several
individual documents in a single website or a single volume (PDF) for publication.

5.1 Creating a book project

The first step is to create a book project, using the IDE of our choice, for example, RStudio. The
Figure 5.1 shows the RStudio interface for creating a new book project with Quarto. As usual, we
select a name for the directory that stores the project as shown in the Figure 5.2.

New Project Wizard

Back Project Type

& New Project >
P He

R Package >
R Shiny Application > Desc
% Quarto Project > Com
| =5 Quarto Website > Agrit
Tuto
) Quarto Blog > Anyt

El Quarto Book

Figure 5.1: RStudio interface for creating a new Quarto project of type book.

e Home page for the Quarto tutorial on books.

35

https://quarto.org/docs/books/

5 Books

New Project Wizard

Back Create Quarto Book

Directory name:

| primer-libro ‘
Create project as subdirectory of:
| ~/DSLab/Formacion/UCLM-Doctorado/2024-Repr | Browse...

Engine: I: Knitr v:l

Create a git repository
Use renv with this project

| Use visual markdown editor 7

Open in new session Create Project Cancel

Figure 5.2: Dialog to indicate the name of the directory that stores the book project and some basic
configuration options, such as the execution engine for code blocks embedded in docu-
ments (highlighted in red).

5.2 Configuration options

Unlike individual documents, in projects such as book type projects that group several documents
(.qmd files) into a single collection, we can specify global configuration options for the entire project
in a separate _quarto.yml file, which must be present in the root directory of our project.

By default, the configuration options presented by this file in a newly created project of this type
are the following.

project:
type: book

book:

title: "First book"
author: "Norah Jones"
date: "20/12/2024"
chapters:

- index.gmd

- intro.qmd

- summary.qmd

- references.qgmd

bibliography: references.bib

36

5 Books

format:
html:
theme: cosmo
pdf:
documentclass: scrreprt

editor: visual

The new elements in this list of options are:

e project —> type: book: Allows you to indicate the type of project you want to set up so
that Quarto adjusts its behavior and can group a collection of documents. It activates the
interpretation of options related to this type of project.

e book: New category of options that indicates the specific configuration applicable to all docu-
ments in this project, as well as global options. For instance, the title, author, and date will
be displayed on a special cover page.

e chapters: New subcategory of options that allows you to insert a list of file names that contain
the different sections or chapters of your book.

We must keep in mind that the sections or chapters will be processed in exactly the same order in
which they appear in this list, so it is important to pay attention to this order.

5.3 Home page (preface)

In addition to the new _quarto.yml file, another file called index.qgmd is generated which contains
the material that will be presented as the cover of the book or collection of documents.

A general file is also created in other types of projects, for example for the home page of a website
generated with Quarto. It is in this cover page that the general configuration information is contained
(title, authors, date, etc.).

The content of this file is the same as in any other document, following the same Quarto syntax rules
for .qmd files that we have already seen.

It should also be noted that the title of this cover page is not usually numbered and, therefore, it is
common for it to be configured as:

Preface {.unnumbered}

5.4 Writing tools

All the writing tools we have already seen in the Chapter 4 can be used in the case of chapters in a
book. It is important to note that links to sections also work from documents in other sections or
chapters of the book, even if they are in a different file.

37

5 Books

5.4.1 Book structure

In addition to standard chapters, we can also organize the book’s content into parts (which group
together related chapters), as well as appendices, presented after the main content of the book to
provide additional material.

Let’s look at an example of a book configuration that includes several parts and that we can integrate
into the rest of the project configuration, within the _quarto.yml file.

chapters:
- index.qmd
- preface.qgmd
- part: dice.qgmd
chapters:
- basics.qgmd
- packages.qgmd
- part: cards.gmd
chapters:
- objects.gmd
- notation.qmd
- modifying.qgmd
- environments.qgmd

It is important to note that in this case the part option can accept either a file with a .qmd extension
(as in the example), or a quoted string that simply indicates a title for the part.

Now we present an example for appendices.

book:

title: "mybook"
author: "Jane Doe"
date: "5/9/2021"
chapters:

- index.qmd

- intro.gmd

- summary.qmd

- references.qgmd
appendices:

- tools.gmd

- resources.qgmd

It is important to note that these configuration options generate the appropriate output (parts and
appendices) both in the case of HTML websites and when generating a PDF document, following in
the second case the standard LaTeX syntax to indicate the structure of the document.

o Example of a well-known book by H. Wickham created in Quarto and publicly accessible, which
is organized in parts that group chapters.
o Additional configuration options for the structure of a book in Quarto.

38

https://r4ds.hadley.nz/
https://r4ds.hadley.nz/
https://quarto.org/docs/books/book-structure.html

5 Books
5.5 Managing references

As mentioned above, internal references (to figures, tables, equations, and other sections of the
document, among other items) work exactly the same as in individual documents (see Section 4.5.1),
with the added advantage that in a book that combines different chapters, the numbering of all items
is updated to reflect the chapter number as a prefix to the item number (e.g., “Figure 1.2” for the
second figure in chapter 1).

It is important to note that for automatic item numbering to work properly, it is important that
items begin with the appropriate prefix (#sec- for sections, #fig- for figures, etc.).

5.6 Project preview

To preview on our local machine the project we have created using RStudio, we must select the Build
tab in the upper right panel and press the Render Book button to generate all the output formats
that are configured in the _quarto.yml file, as shown in Figure 5.3. There is also the option to select
only one of these output formats by carefully clicking on the small arrow next to the “Render Book”
button, to display a list of output format options and select one of them, as shown in Figure 5.4

Environment History Connections| Build |[Tutorial

Render Book -

Figure 5.3: Button to launch the book preview process in RStudio.

Environment History Connections Build Tutorial

Render BGDI(D

All Formats Ctrl+5Shift+B

@ | HTML Format
“L PDF Format

Figure 5.4: List of configuration options that appear when clicking the arrow next to the Render
Book button

39

5 Books
5.7 Publication options

There are several [publishing options] to make our book or collection of documents available to other
users, including;:

e Quarto Pub.

e GitHub Pages, very convenient if we want an integrated solution for version management of
our project’s source code.

e Netlify, a professional web publishing platform that allows more configuration and setup op-
tions.

It is also possible to use other services to publish documents, books, and websites with Quarto,
including GitLab (an alternative to GitHub), although they will not be as automated and integrated
with the tools offered by Quarto as the previous options.

5.8 Customisation and templates

As we have explained for individual documents, analogous configuration options can be used to
customize the style and design theme that we can apply to our book or collection of documents, both
in the HTML website version and in the PDF output version.

e Guide to customizing the style of books in Quarto.
o Example gallery of some styles to customize the appearance of Quarto documents.

40

https://quarto.org/docs/books/book-output.html
https://github.com/quarto-dev/quarto-gallery/tree/main

6 Reports

Lab notebook, field guide (always in a single document).

6.1 Templates
6.2 Project management

6.3 Publishing

41

Part |11

Publications

42

7 Scientific publications

In this chapter we see another important characteristic of Quarto, such as the ability to create
document formats by extending the formats basic output file like html, pdf or docx. One of the
uses main aspects of this capacity of Quarto is to produce documents that meet the requirements
requested by the publishers scientific for publication of research articles in journals that they edit.

It is worth noting that Quarto, as a minimum, always attempts to produce output in HTML and
PDF formats, so templates should contemplate these two scenarios. Additionally, the use of span
and div environments in different sections lets us apply the requested design and style tools for each
editorial template for both HTML (with CSS) and PDF (with environments and LaTeX macros).
Another interesting aspect is that these templates aim to unify the coding of information about
authors and their affiliations, so that it is written only once and it can be reused in different output
formats. Finally, Quarto can also manage styling requirements of bibliographic citations imposed by
scientific publishers and magazines in their publications.

e List of editorial formats supported in Quarto.
o Alternative list of editorial formats supported in Quarto.

Sometimes it will be necessary to add additional code to make fine adjustments to the document
templates, so that we can adhere to the requirements imposed by the publisher for that publication.
The following tutorial offers information on the different points at which we can insert additional
code to perform these fine adjustments.

e Templates adjustment.

Finally, in case there is no template for the format we need, it is always possible to create our own
article format.

o Creating our own article template.

The initial step is to create a new project directory and run within it the command to download
the standard template (not customized yet) for creating post formats scientists in Quarto. Suppose
the project directory is called jourA. Be careful, because in this example the symbol $ should not
be entered in the terminal; we are just using it to differentiate the user input from the response it
returns the terminal when executing the command.

Several files are created, including:

e _extensions/jourA/_extension.yml, which defines the output formats available in this arti-
cle template. For example, if we define an output format html and another pdf in this template,
these will be available in the Quarto document as jourA-html and jourA-pdf when a Quarto
document uses our template.

e template.pdf, which is the example document that is generated to demonstrate to the user
the structure and options available and start working on it.

43

https://quarto.org/docs/journals/
https://github.com/quarto-journals
https://quarto.org/docs/journals/templates.html
https://quarto.org/docs/journals/formats.html

7 Scientific publications

Listing 7.1 Terminal

$ cd jourA
$ quarto create extension journal
? Extension Name > jourA

Creating extension at /home/jfelipe/quarto/dev/jourA:
- Created README.md

- Created template.qmd

- Created _extensions/jourA/jourA.lua

- Created _extensions/jourA/styles.css

- Created _extensions/jourA/_extension.yml

- Created _extensions/jourA/header.tex

- Created bibliography.bib

7.1 The keep-tex option: true

If you review the examples offered in the publication template creation guide, you will see as in the
output format options of the template.qnd file, within the PDF output the keep-tex: true option
is usually included. This option forces the file not to be deleted LaTeX (with .tex extension) that
is created as a previous step to compile the final document in PDF. The reason is to allow the user
to modify the file if necessary. LaTeX directly and compile it manually.

However, remember that if you press the Render button again for the PDF format in RStudio, or
run quarto render --to pdf on the command line, said file with .tex extension it is overwritten
and we would lose the changes we have made. Consequently, it is better to copy it to another location
before making manual adjustments or create a new one branch (if we use version control) to adjust
the file in it without the risk to overwrite the changes made.

7.2 Figures and graphs for publication

An important advantage of using Quarto to create our articles is being able to integrate the results
of the execution of our code (graphs, tables, results of evaluation of models and algorithms, etc.)
directly in our scientific documents. This greatly mitigates the drawbacks already mentioned at the
beginning of the workshop to keep all elements updated, allowing us to ensure that we are using the
correct version of the code on the appropriate data.

e Publication Perfect: a tutorial with open online materials on how to improve the elements of
our publications and articles, created by the Harvard Chan Bioinformatics Core group.

Let’s remember some of the packages in R that allow us to create graphs and tables now prepared
for publication:

e Hmisc: includes many functions for description of data and creation of graphs and tables
summarizing data and models, ready to publish.

44

https://github.com/hbctraining/publication_perfect?tab=readme-ov-file
https://hbiostat.org/r/hmisc/

7 Scientific publications

o Examples reproducible with Hnisc. It is indicated that the examples are for R Markdown, but
they actually work also for Quarto (since that the same knitr engine is used by default to
process and execute the blocks of code.)

o summarytools: offers many features and tools to present summaries of data tables and data
frames, both in table as in graphs for EDA.

o Examples of use of summarytools.

e ggpubr: package to help customize graphics created with ggplot2, so that they are ready for
inclusion in publications scientific.

o Collection of tutorials and examples for creating graphs with ggpubr.

o List and examples of packages to create tables in publications.

7.3 Facilitate citation of articles

In a context of the academic and research world in which the volume of works and published articles
has grown exponentially in digital media, it is very It is important to facilitate the work of other
researchers as much as possible when they want to cite our publications. On the other hand, there
are many reference services of citations and databases that help researchers find materials that they
should review.

We can include metadata in our document to facilitate full automation or partial of this process of
indexing publications and citations of our work.

The following tutorial shows several examples of metadata fields to facilitate the citations that we
can include in the header of the document, including information about the journal or publication
that contains the article (such as the DOI), as well as specific formats compatible with scientific
bibliography indexing engines such as Google Scholar.

e Guide for creating citable articles in Quarto.

By default, when we include this information in the header of the Quarto document it must create
an appendix with the citation information in plain text and in BibTeX.

7.4 Example of using scientific article templates

7.4.1 Elsevier Magazine Template

Prerequisite: have LaTeX installed

This section shows how to generate a draft of an article to send to a scientific journal from
the Elsevier publishing house. For this process to work, remember You must previously have
a LaTeX distribution installed on your computer (such as TeX Live) or install the minimal
TinyTeX distribution in RStudio.

In this case, the steps to follow are quite simple:

45

https://hbiostat.org/r/hmisc/examples
https://github.com/dcomtois/summarytools
https://cran.r-project.org/web/packages/summarytools/vignettes/introduction.html
https://rpkgs.datanovia.com/ggpubr/
http://www.sthda.com/english/articles/24-ggpubr-publication-ready-plots/
https://thatdatatho.com/easily-create-descriptive-summary-statistic-tables-r-studio/
https://quarto.org/docs/authoring/create-citeable-articles.html

7 Scientific publications

1. We create a new directory to save our project, for example, a folder with the name
example-elsevier.

2. In the terminal (for example in RStudio, tab in the bottom left panel), We enter the newly
created folder and execute a command to download the template and start using it:

Listing 7.2 Terminal

cd example-elsevier
quarto use template quarto-journals/elsevier

3. We create a new project in RStudio on the already existing directory in which we have down-
loaded the template files.

4. We open the file example-elsevier.qmd and press the Render button to generate the the
output in PDF.

If we had previously created our project with a generic Quarto document, it will not we have to start
from scratch. Just open a terminal inside the project directory and execute:

Listing 7.3 Terminal

quarto add quarto-journals/elsevier

Finally, if we want to generate the draft article in PDF format from the command line, we execute:

Listing 7.4 Terminal

quarto render article.gmd --to elsevier-pdf

Take a good look at the output format option specified in the .qmd file to generate the draft article:

46

7 Scientific publications

Listing 7.5 example-elsevier.qmd

format:
elsevier-pdf:
keep-tex: true

47

8 FAIR Principles

8.1 Overview

For years, a movement has developed within the scientific community unstoppable to promote access
to all information related to jobs, experiments and scientific publications, so that their validation is
facilitated and reproduction/replication by other interested researchers or experts.

This movement has especially concentrated, in its initial phase, on guaranteeing at least access to
the raw materials necessary to develop many of these projects: the data. The fundamental principles
that must be met so that data can be indexed and reused as much as possible, they are called FAIR
Principles and are included, among other sources, in the European Commission guidance documents
for researchers participating in projects funded by said organization. These FAIR principles were
initially established by Wilkinson et al. (2016) and they are:

o Findable: Data and metadata (data that describes the data, such as its format, content,
meaning, link with other data, etc.) must receive a globally unique and persistent identifier
that allows it to be located directly. The most used standard today is the DOI system (ISO
26324). The metadata must include clearly and explicitly identify the data they describe, and
both data and metadata must be registered or indexed in sources that allow their search and
retrieval.

e Accessible: Data and metadata must be obtainable through a standard and open communi-
cation protocol. Metadata must continue to remain accessible even when the data is no longer
available.

e Interoperable: Data and metadata must use standard and open knowledge representation
formats, vocabularies that follow FAIR principles and must include references to other data
and metadata with which they are related.

e Reusable: The data and metadata are described in a rich and precise manner, with multiple
relevant attributes that facilitate their use by other users.

It is important to emphasize the importance of publishing openly and following good reviewable and
reproducible/replicable research practices. For example, The National Commission for the Evaluation
of Research Activity (CNEAI) has published in 2023-2024 new criteria for evaluation of publications
valid for be able to be evaluated in the granting of a six-year period of research. Likewise, in all
the recent calls financed by the different ministries of the Government of Spain It is required that
research results, especially all publications, datasets, software and procedures are publicly accessible
and comply with FAIR principles.

However, there is still some way to go. A recent study (Kumar et al., 2024) analyzed the degree
of compliance with the FAIR principles (the so-called FAIRness) of the results research published
by recently funded multi-stakeholder projects within the European H2020 framework program and
related to the agri-food sector. As main conclusions, less than 10% of the projects analyzed managed

48

https://horizoneuropencpportal.eu/sites/default/files/2022-09/ore-fair-data-guide.pdf
https://www.doi.org/

8 FAIR Principles

to comply with the FAIR principles, although these principles were fulfilled to a greater extent in
the articles of research published in journals and conferences, as well as in books.

In general, another conclusion is that the European agri-food and rural sector is becoming increasingly
dependent on data and that the application of the principles FAIR contributes to improving decision-
making and better exploiting innovation results derived from these projects. However, it is also noted
that the research community for the development of the agri-food and rural sector still has limited
experience in the application of these principles.

8.2 Publication of source code and technical documentation

o Platforms like GitHub and GitLab make project management and publishing much easier soft-
ware within research initiatives and projects, as well as publication and maintenance of digital
technical documentation centers on tools, procedures and good practices related to the activity
of said initiatives.

« Examples of the SoilWise project, funded within the HE program of the European Community.

— SoilWise digital co-creation space on GitHub. It has been achieved creating an organiza-
tion (free of charge), so that repositories can be created on this platform, grouped under
the umbrella of the project, for different purposes: lists of software of interest, technical
documentation, user manuals, architecture of the proposed platform, etc.

— Documentation Center. Here we use the MkDocs solution, which works with the Python
language (Quarto has great advantages in this aspect).

— Repository with data collection tools, documented in the page describing the data collec-
tion process in the project infrastructure.

e Open repositories of data and research material such as Zenodo and Figshare can help publicize
and cite research material. For example, Zendo can issue a persistent identifier (DOI) for a
software repository on GitHub pointing to a particular version of the software that has been
released and tagged from that project on GitHub. This allows it to be included in a scientific
publication to know with certainty what exact version of the code was software has been used
to perform the work reported in that publication.

As an example, Figure 8.1 shows the Zenodo page corresponding to the PyMPDATA software, which
points to the original software repository hosted on GitHub, shown in turn in the Figure 8.2. we can
see metadata cross-references that maintain connection consistency in both directions.

e The project page in Zenodo points to a specific version of the GitHub repository, and maintains
a list of all the previously referenced versions of the same project. Each new version receives a
different DOI, to differentiate them univocally.

o The repository description page on GitHub displays, among other tags, the DOI for that version
in particular, the DOI to the scientific article published in JOSS explaining this software, as
well as other labels for attribution of project financing sources.

49

https://soilwise-he.eu/
https://github.com/soilwise-he
https://soilwise-documentation.pages.dev/
https://www.mkdocs.org/
https://github.com/soilwise-he/harvesters
https://soilwise-he.github.io/SoilWise-documentation/technical_components/ingestion/
https://soilwise-he.github.io/SoilWise-documentation/technical_components/ingestion/
https://about.zenodo.org/
http://figshare.com/
https://docs.github.com/repositories/archiving-a-github-repository/referencing-and-citing-content#issuing%20-a-persistent-identifier-for-your-repository-with-zenodo
https://docs.github.com/repositories/archiving-a-github-repository/referencing-and-citing-content#issuing%20-a-persistent-identifier-for-your-repository-with-zenodo
https://zenodo.org/records/13988934
https://github.com/open-atmos/PyMPDATA/tree/v1.2.0?tab=readme-ov-file

8 FAIR Principles

Communities My dashboard @ Signup

A open-atmos

Published October 24, 2024 | Version v1.2.0 [stivare J & open |
® VEWS & DOWNLOADS
Yy » Show more details

Arabas, Sylwester' @; Banaskiewicz, Jakub?; Bartman, Piotr2 @; Derlatka, Kacper?; Drenda, Szymon2; Manna, Maciej?
Olesik, Michael? @: Magnuszewski, Pawel® @: Manna, Maciej2; Rozwoda, Pawel?; Sadowski, Michal® Show affations

Versions
Numba-accelerated Pythonic implementation of MPDATA with examples in Python, Julia and Matlab

Version v1.20 Oct24, 2024
Files 10.5281/zenodo. 13988934

Version v1.1.6 Sepa1, 204

open-atmos/PyMPDATA-v1.2.0.zip 2/ 10.5281/zenodo. 13823080

@ open-atmos/PyMP Version v1.1.5 Sep 1, 2024

10.5281/zenodo. 13625733

W open-atmos-PyMPDATA.8fff7ce Version vi.1.4 PO
JE—
O appveyoryml o35 Bytes 10,5261 zenc. 19623670

@ binder Version v1.1.3 Aug 28, 2024

Figure 8.1: PyYMPDATA project page (v1.2.0) at Zenodo

Contributors 14

— 2000 %
= 80 ®O: 7

Deployments 118

[0 README &2 License

i -
-

e I

PyMPDATA @ github-pages 2 hours ago

+ 117 deployments

PyMPDATA

Languages

Python |3

v Maintained? [yes

JOSS | 10.21105/joss.03896 | DOI

10.5281/zenodo.1. ® Python 96.2% ® TeX3.7%

Shell 0.1%

pypi package 1.6 | docs |pdoc.dev

PyMPDATA is a high-performance Numba-accelerated Pythonic implementation of the MPDATA algorithm of
Smolarkiewicz et al. used in geophysical fluid dynamics and beyond for numerically solving generalised
convection-diffusion PDEs in 1D, 2D and 3D structured meshes with coordinate transformations.

Figure 8.2: PyYMPDATA (v1.2.0) project page on GitHub

50

https://zenodo.org/records/13988934
https://github.com/open-atmos/PyMPDATA/tree/v1.2.0?tab=readme-ov-file

8.3

8.4

8 FAIR Principles
Dataset publication

Zenodo is, probably along with Figshare, one of the most well-known and widely used open
data repositories in research, especially in Europe, being a project integrated into OpenAIRE,
a non-profit organization created by the European Union to promote open science.

Scientific publications in open access (open access).

Important to link the DOI of a dataset in an article, so that they can be traced (in reverse) the
DOIs of the publications that use said dataset.

Reference management and open publication

In addition to the assignment of a DOI to articles, data sets, software and other elements of research
work, there are some additional tools that facilitate the identification of the works and the attribution
of their authorship (many of them with support explicit in Quarto)

The ORCID is a free, unique and persistent identifier for individuals who engage in research,
innovation and academic activities. Allows you to identify quickly the identity of an author
in a publication or scientific work or the person in charge to publish and maintain a resource
(dataset, software repository, etc.). Furthermore, the ORCID allows you to generate a list of
all the contributions made by the identified individual.

There is an extensive list of preprints files that allow the publication of preliminary works that
have not yet gone through a review process by pairs for publication in a magazine. More and
more publishers accept (and even encourage) publication of these documents to quickly record
research progress, due to the high times required by the review and publication process in many
prestigious journals.

PLOS is a non-profit Open Access publisher, which edits and publishes several high-impact,
wide-spread digital magazines in many areas including, transformation and sustainability.

A growing number of publishers are also adopting open publishing principles (Open Access), although
usually impacting a significant cost on the authors or the institutions to which they are affiliates to
cover publication costs.

Guide to creating citable articles with Quarto.

o1

https://about.zenodo.org/
http://figshare.com/
https://www.openaire.eu/
https://orcid.org/
https://en.wikipedia.org/wiki/List_of_preprint_repositories
https://plos.org/
https://journals.plos.org/sustainabilitytransformation/
https://quarto.org/docs/authoring/create-citeable-articles.html

9 Additional resources

9.1 Quarto

o Getting started: https://quarto.org/docs/get-started/.
o Complete guide (online): https://quarto.org/docs/guide/.
o Reference of functions and options (online): https://quarto.org/docs/reference/.

o Gallery of example projects: https://quarto.org/docs/gallery/.

9.2 FAIR principles and open science

o Article on FAIR principles: https://www.nature.com/articles/sdata201618.

o Mandate on scientific data management in the Horizon Europe (EC) Programme: https://ww
w.openaire.eu/how-to-comply-with-horizon-europe-mandate-for-rdm.

— All HE projects must publish at the beginning of the work plan a Data Management
Plan (DMP), explaining in great detail how they will be obtained, processed, analyze and
manage the data used and generated in the project activities.

* DMP TOOL: Online tool to create DMPs following a structured procedure.
— “How to make your data FAIR”: https://www.openaire.eu/how-to-make-your-data-fair.
— Data Management Plan (University) of Cambridge.
o ROpenSci Community: https://ropensci.org/es/.
o ROpenSpain Community: https://ropenspain.es/.

52

https://quarto.org/docs/get-started/
https://quarto.org/docs/guide/
https://quarto.org/docs/reference/
https://quarto.org/docs/gallery/
https://www.nature.com/articles/sdata201618
https://www.openaire.eu/how-to-comply-with-horizon-europe-mandate-for-rdm
https://www.openaire.eu/how-to-comply-with-horizon-europe-mandate-for-rdm
https://dmptool.org/
https://www.openaire.eu/how-to-make-your-data-fair
https://www.data.cam.ac.uk/data-management-guide/creating-your-data/data-management-plan
https://ropensci.org/es/
https://ropenspain.es/

References

Barba, L. A. (2018). Terminologies for reproducible research. arXiv Preprint arXiv:1802.03311.

Begley, C., & Ellis, L. (2012). Drug development: Raise standards for preclinical cancer research.
Nature.[Online]. 483 (7391).

Brainard, J., You, J., et al. (2018). What a massive database of retracted papers reveals about
science publishing’s “death penalty.” Science, 25(1), 1-5.

Burman, L. E., Reed, W. R., & Alm, J. (2010). A call for replication studies. Public Finance Review,
38(6), 787-793.

Ioannidis, J. P. (2005). Why most published research findings are false. PLoS Medicine, 2(8), e124.

Knuth, D. E. (1984). Literate programming. Comput. J., 27(2), 97-111. https://doi.org/10.1093/
comjnl/27.2.97

Kumar, P., Hendriks, T., Panoutsopoulos, H., & Brewster, C. (2024). Investigating FAIR data
principles compliance in horizon 2020 funded agri-food and rural development multi-actor projects.
Agricultural Systems, 214, 103822. https://doi.org/https://doi.org/10.1016/j.agsy.2023.103822

Leek, J. T., & Peng, R. D. (2015). Reproducible research can still be wrong: Adopting a prevention
approach. Proceedings of the National Academy of Sciences, 112(6), 1645-1646.

Peng, R. D. (2011). Reproducible research in computational science. Science, 334(6060), 1226-1227.

Wicherts, J. M., Borsboom, D., Kats, J., & Molenaar, D. (2006). The poor availability of psycholog-
ical research data for reanalysis. American PAsychologist, 61(7), 726.

Wilkinson, M. D., Dumontier, M., Aalbersberg, Ij. J., Appleton, G., Axton, M., Baak, A.,
Blomberg, N., Boiten, J.-W., Silva Santos, L. B. da, Bourne, P. E., et al. (2016). The FAIR
Guiding Principles for scientific data management and stewardship. Scientific Data, 3(1), 1-9.
https://doi.org/https://doi.org/10.1038 /sdata.2016.18

93

https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1016/j.agsy.2023.103822
https://doi.org/10.1038/sdata.2016.18

A Code reference

A.1 Quarto statements

A.2 R statements

54

B Integrated Development Environments for
Quarto

B.1 R Studio
B.2 Visual Studio

B.3 Positron

5}

C Useful R packages

C.1 Ecology
C.2 Data visualisation

C.3 Data processing

C.3.1 Tidyverse
C.3.2 Alternatives to the Tidyverse

C.3.3 Pipelines
C.4 Spatial data

C.4.1 sf (Simple Features)

C.4.2 terra

C.5 Time series

C.5.1 Tidyverts

C.6 Data visualisation

C.6.1 ggplot2

C.7 Data analysis and Machine Learning

C.7.1 Tidymodels

C.7.2 mir3

o6

D Producing PDF documents

D.1 PDF documents with Quarto
D.2 Quick LaTeX primer

D.3 Available templates

Y

References

Barba, L. A. (2018). Terminologies for reproducible research. arXiv Preprint arXiv:1802.03311.

Begley, C., & Ellis, L. (2012). Drug development: Raise standards for preclinical cancer research.
Nature.[Online]. 483 (7391).

Brainard, J., You, J., et al. (2018). What a massive database of retracted papers reveals about
science publishing’s “death penalty.” Science, 25(1), 1-5.

Burman, L. E., Reed, W. R., & Alm, J. (2010). A call for replication studies. Public Finance Review,
38(6), 787-793.

Ioannidis, J. P. (2005). Why most published research findings are false. PLoS Medicine, 2(8), e124.

Knuth, D. E. (1984). Literate programming. Comput. J., 27(2), 97-111. https://doi.org/10.1093/
comjnl/27.2.97

Kumar, P., Hendriks, T., Panoutsopoulos, H., & Brewster, C. (2024). Investigating FAIR data
principles compliance in horizon 2020 funded agri-food and rural development multi-actor projects.
Agricultural Systems, 214, 103822. https://doi.org/https://doi.org/10.1016/j.agsy.2023.103822

Leek, J. T., & Peng, R. D. (2015). Reproducible research can still be wrong: Adopting a prevention
approach. Proceedings of the National Academy of Sciences, 112(6), 1645-1646.

Peng, R. D. (2011). Reproducible research in computational science. Science, 334(6060), 1226-1227.

Wicherts, J. M., Borsboom, D., Kats, J., & Molenaar, D. (2006). The poor availability of psycholog-
ical research data for reanalysis. American PAsychologist, 61(7), 726.

Wilkinson, M. D., Dumontier, M., Aalbersberg, Ij. J., Appleton, G., Axton, M., Baak, A.,
Blomberg, N., Boiten, J.-W., Silva Santos, L. B. da, Bourne, P. E., et al. (2016). The FAIR
Guiding Principles for scientific data management and stewardship. Scientific Data, 3(1), 1-9.
https://doi.org/https://doi.org/10.1038 /sdata.2016.18

o8

https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1016/j.agsy.2023.103822
https://doi.org/10.1038/sdata.2016.18

	Preface
	Quarto
	Scientific documents
	Literate programming
	Reproducible research
	Reproducibility and replicability
	Replication levels
	Replicability tools

	Quarto for scientific publications
	Quartion installation

	Types of documents
	Individual documents
	Books
	Articles and publications
	Presentations
	Websites
	Dashboards

	Quarto workflow
	Document assembly line
	Producing HTML
	Producing PDF
	Customising PDF documents

	Individual Documents
	Creating a document with RStudio
	Document structure
	The preamble
	List of options
	Basic Markdown syntax

	Creating documents (output)
	Preview
	Selecting output type
	Basic configuration options

	Executable code chunks
	Author toolkit
	Document sections
	Equations
	Tables
	Callouts
	Bibliographic references
	General document style

	Quarto books
	Books
	Creating a book project
	Configuration options
	Home page (preface)
	Writing tools
	Book structure

	Managing references
	Project preview
	Publication options
	Customisation and templates

	Reports
	Templates
	Project management
	Publishing

	Publications
	Scientific publications
	The keep-tex option: true
	Figures and graphs for publication
	Facilitate citation of articles
	Example of using scientific article templates
	Elsevier Magazine Template

	FAIR Principles
	Overview
	Publication of source code and technical documentation
	Dataset publication
	Reference management and open publication

	Additional resources
	Quarto
	FAIR principles and open science

	References
	Appendices
	Code reference
	Quarto statements
	R statements

	Integrated Development Environments for Quarto
	R Studio
	Visual Studio
	Positron

	Useful R packages
	Ecology
	Data visualisation
	Data processing
	Tidyverse
	Alternatives to the Tidyverse
	Pipelines

	Spatial data
	sf (Simple Features)
	terra

	Time series
	Tidyverts

	Data visualisation
	ggplot2

	Data analysis and Machine Learning
	Tidymodels
	mlr3

	Producing PDF documents
	PDF documents with Quarto
	Quick LaTeX primer
	Available templates

	References

